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Abstract
Recent advancements in generative models have revolution-
ized image generation and editing, making these tasks acces-
sible to non-experts. This paper focuses on local image edit-
ing, particularly the task of adding new content to a loosely
specified area. Existing methods often require a precise mask
or a detailed description of the location, which can be cum-
bersome and prone to errors. We propose Click2Mask, a
novel approach that simplifies the local editing process by
requiring only a single point of reference (in addition to the
content description). A mask is dynamically grown around
this point during a Blended Latent Diffusion (BLD) process,
guided by a masked CLIP-based semantic loss. Click2Mask
surpasses the limitations of segmentation-based and fine-
tuning dependent methods, offering a more user-friendly and
contextually accurate solution. Our experiments demonstrate
that Click2Mask not only minimizes user effort but also en-
ables competitive or superior local image manipulations com-
pared to SoTA methods, according to both human judgement
and automatic metrics. Key contributions include the simpli-
fication of user input, the ability to freely add objects uncon-
strained by existing segments, and the integration potential of
our dynamic mask approach within other editing methods.

1 Introduction
Recent advances in generative models have revolutionized
image generation and editing capabilities, enabling both
streamlined workflows and accessibility for non-experts.
The latest approaches utilize natural language to manipulate
images either globally – altering the content or style of the
entire image – or locally – adding, removing, or modifying
specific objects within a limited image region.

In this work, we focus on local editing, specifically on
the task of adding new content in a local area. Similar to
DragDiffusion (Shi et al. 2023) for movement and Mag-
icEraser (Li et al. 2024) for removal, this focused scope
leverages specialization to tackle the unique challenges of
local editing. To accomplish such edits, some existing meth-
ods require users to provide explicit precise masks (Avra-
hami, Lischinski, and Fried 2022; Ramesh et al. 2022; Avra-
hami, Fried, and Lischinski 2023; Wang et al. 2023b; Xie
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Figure 1: Comparisons to SoTA models. A comparison of
Emu Edit (Sheynin et al. 2023), MagicBrush (Zhang et al.
2023) and DALL·E 3 (Betker et al. 2023) with our model
Click2Mask. In each example, the top prompt was given
to the other models, while Click2Mask received the simpler
bottom prompt, in addition to the blue dot (mouse click) on
the input. Other models completely change the image, or the
background, fail to edit, or produce unrealistic results.

et al. 2022), which is tedious and may yield unexpected re-
sults due to lack of mask precision. Other methods describe
the desired manipulations in natural language, as an edit in-
struction (Brooks, Holynski, and Efros 2023; Sheynin et al.
2023), or by providing a caption and the desired change
(Bar-Tal et al. 2022; Kawar et al. 2023; Hertz et al. 2022; Tu-
manyan et al. 2022). These methods also require user exper-
tise, and their results may suffer from ambiguous or impre-
cise prompts. Moreover, they fail to ensure that the changes
to the image are confined to a local area, or that they occur
at all, as demonstrated in Figure 1.

To overcome the aforementioned shortcomings, we intro-
duce Click2Mask, a novel approach that simplifies user in-
teraction by requiring only a single point of reference rather
than a detailed mask or a description of the target area.
The provided point gives rise to a mask that dynamically
evolves through a Blended Latent Diffusion (BLD) process
(Avrahami, Lischinski, and Fried 2022; Avrahami, Fried,
and Lischinski 2023), where the evolution is guided by a
semantic loss based on Alpha-CLIP (Sun et al. 2023). This
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Figure 2: Mask evolution. A visualization of the mask evolution throughout the diffusion process. Leftmost image is input with
clicked point, rightmost image is the final Click2Mask output. Intermediate images are decoded latents z̃fg at several diffusion
steps, where the purple outline depicts the contour of current (upscaled) mask Mt. Percentages indicate the step out of 100
diffusion steps, with the last being the final evolved mask.

process (Figure 2) enables local edits that are both precise
and contextually relevant (Figures 1 and 3).

Unlike segmentation-based methods that depend on pre-
existing objects (Couairon et al. 2022; Xie et al. 2023; Wang
et al. 2023a; Zou et al. 2024), Click2Mask does not confine
the edit area to the boundaries of an existing segment. Fur-
thermore, in contrast to editing approaches that require fine-
tuning the diffusion model (Wang et al. 2023b; Xie et al.
2022; Kawar et al. 2023; Avrahami et al. 2023), we employ
pre-trained models, and only perform context dependent op-
timization on the mask.

Our experiments demonstrate that Click2Mask not only
reduces the effort required by users but also achieves com-
petitive or superior results compared to state-of-the-art
methods in local image manipulation.

In summary, our contributions are: (i) Reduction of user
effort by eliminating the need for precise mask outlines,
or overly descriptive prompts. (ii) Ability to add objects
in a free-form manner, unconstrained by boundaries of ex-
isting objects or segments. (iii) Our dynamically evolving
mask approach is not a stand-alone method, but rather it can
be embedded as a mask generation of the fine-tuning step
within other methods that internally employ a mask, such as
Emu Edit (Sheynin et al. 2023) which currently generates
multiple masks (a precise mask using DINO (Caron et al.
2021) and SAM (Kirillov et al. 2023), an expanded version
of it, and a bounding box), and filters the best result from
multiple images produced using these masks.

2 Related Work
In recent years, much work has been done on image gen-
eration, with diffusion-based models (DMs) (Ho, Jain, and
Abbeel 2020; Song, Meng, and Ermon 2020; Dhariwal and
Nichol 2021; Rombach et al. 2022; Ramesh et al. 2022; Sa-
haria et al. 2022) facilitating a host of SoTA text-guided im-
age editing methods and capabilities.

Mask-based approaches. Text-guided image manipu-
lation may naturally be limited to a specific region us-
ing a mask. In the context of DMs this was first ex-
plored in Blended Diffusion (Avrahami, Lischinski, and
Fried 2022), where a user-provided mask is used to blend

images throughout a denoising process with a text-guided
noisy image. This approach was later incorporated into La-
tent Diffusion (Rombach et al. 2022) by performing the
blending in latent space. The resulting Blended Latent Diffu-
sion (BLD) method (Avrahami, Fried, and Lischinski 2023)
serves as the basis for our work and described in more de-
tail in Section 3. GLIDE (Nichol et al. 2022), Imagen Ed-
itor (Wang et al. 2023b) and SmartBrush (Xie et al. 2022)
fine-tuned the DM for image inpainting, by obscured train-
ing images or by conditioning on a mask. However, user-
provided masks have a major disadvantage: the success of
the edit depends on the exact shape of the mask, which can
be tedious and time-consuming for a user to create.

Mask-free approaches. Both Text2Live (Bar-Tal et al.
2022), which generates a composite layer, and Imagic
(Kawar et al. 2023), which interpolates target text and op-
timized source embeddings, fine-tune the generative model
for each image, which is quite costly, contrary to our work.
Several works use attention injection, such as Plug-and-Play
(Tumanyan et al. 2022) and Prompt-to-Prompt (Hertz et al.
2022), where the latter requires a time-consuming caption of
the input image, unlike our method. Most of these methods
focus on altering a certain object (by replacement, removal
or style change), or applying global changes (style or con-
tent), in contrast to our focus on adding objects freely.

Instruction-based approaches. Other methods can add
objects in a free manner. InstructPix2Pix (Brooks, Holyn-
ski, and Efros 2023) (subsequently fine-tuned by Mag-
icBrush (Zhang et al. 2023)) produces (instruction, image)
pairs, used to train an instruction-conditioned DM. Emu Edit
(Sheynin et al. 2023) is a more recent model trained on a
wide range of learned task embeddings to enable instruction-
based image editing, however, it is not publicly available.
DALL·E3 (Betker et al. 2023) is also proprietary, and modi-
fies the entire image as demonstrated in Figure 1. DALL·E3
and DALL·E 2 (Ramesh et al. 2022) apparently support
masked inpainting, but we are unaware of a publicly avail-
able way to apply it to general real images. MGIE (Fu et al.
2024) train a DM, utilizing a MLLM to derive expressive
instructions. These methods require the user to specify the
desired localization in words, which has a few shortcom-
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Figure 3: Examples of Click2Mask outputs. The leftmost
column is the input image with clicked point. The other
columns are Click2Mask outputs given the prompts below.

ings. On the user’s side, this requires effort, and it can be
difficult or impossible to describe the precise location. From
the model’s side, failure to visually ground the text-specified
location may fail to perform the desired edit, and/or make
unintended changes in other locations instead.

Segmentation-based approaches. Segmentation meth-
ods have been utilized to overcome the need for a precise
user-provided mask. DiffEdit (Couairon et al. 2022) and
Edit Everything (Xie et al. 2023) generate segmentation-
based masks by utilizing conditionings on diffusion steps, or

SAM (Kirillov et al. 2023), but require an input image cap-
tion, which is painstaking. InstructEdit (Wang et al. 2023a),
which uses Grounding DINO (Liu et al. 2023) and SAM to
generate a mask, does not require one, but requires a descrip-
tion of the object to alter. This can cause errors due to failure
of the model to localize. InstDiffEdit (Zou et al. 2024) gen-
erates masks based on attention maps during denoising.

The segmentation-based methods, however, suffer from a
few limitations: (i) Such models need to “lock” on an exist-
ing object or segment; consequently, in most cases they alter
objects, but do not add new free-form ones, which is our fo-
cus. (ii) These methods typically require the user to provide
an input caption or a description of the altered object.

In contrast to all the above, our work enables adding ob-
jects to real images (as opposed to merely altering existing
ones), without having to provide a precise mask, to describe
the input image, or target image, and without being con-
strained to boundaries of existing objects or segments. We
aim to enable edits where the manipulated area is not well-
defined in advance, and a free-form alteration is required.

3 Blended Latent Diffusion
Blended Latent Diffusion (BLD) (Avrahami, Fried, and
Lischinski 2023) is a method for local text-guided image
manipulation, based on Latent Diffusion Models (LDMs)
(Rombach et al. 2022) and Blended Diffusion (Avrahami,
Lischinski, and Fried 2022). Given a source image x, a guid-
ing text prompt p, and a binary mask m, the model blends the
source latents (obtained by DDIM inversion (Song, Meng,
and Ermon 2020)) with the prompt-guided latents through-
out the LDM process, to derive a blended final output.

Initially, inputs are converted to a latent space. A vari-
ational auto-encoder (Kingma and Welling 2013) with en-
coder E(·) and decoder D(·), encodes x to latent space, s.t.
zinit = E(x). In addition, m is downsampled to mlatent in
order to meet latent spatial dimensions.

In each BLD step t, the following occurs:

1. The latent resulting from the previous step, zt+1, under-
goes denoising conditioned by the prompt p, to yield zfg
(we refer to the generated content as foreground, or fg).

2. The original image latent zinit is noised to step t, yielding
zbg (we refer to the original content as background, bg).

3. The next step zt is obtained by blending zfg and zbg using
mlatent:

zt = zfg ⊙mlatent + zbg ⊙ (1−mlatent) (1)

where ⊙ denotes element-wise multiplication.

After the final step, the output z0 is decoded to obtain the
final edited image x̂ = D(z0).

However, because information is lost during the VAE
encoding, the decoded final output x̂, might exhibit some
artifacts when the unmasked region has important fine-
detailed content (such as faces, text, etc.). Avrahami et
al. (2023) solve this issue by optionally fine-tuning the de-
coder weights for each image after the denoising steps, and
using these weights to infer the final result. In our experi-
ments, we found that this optional background preservation
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“Have a knife laying between the orange and apple” “Add a cat behind the glass window looking at the food”
“A knife” “A cat behind the glass window looking at the food”

“Add a fruit stand to the right of the image” “Add USA for the bag”
“A fruit stand” “USA”

“Add fringe to the pink lampshade” “Add a tennis ball on top of the racket”
“Fringe” “A tennis ball”

Figure 4: Comparisons with SoTA methods. Comparisons of Emu Edit (Sheynin et al. 2023), MagicBrush (Zhang et al. 2023)
and InstructPix2Pix (Brooks, Holynski, and Efros 2023) with our model Click2Mask. Upper prompts were given to baselines,
and lower ones to Click2Mask. The inputs contain the clicked point given to Click2Mask. As Figure 8 shows, baselines often
modify unrelated objects, make global changes, misplace elements, or replace rather than add objects. See appendix for more
comparisons.

process is no longer necessary (possibly due to improve-
ments in the Stable Diffusion VAE), and a final blending
with Gaussian feathering suffices (refer to Figure 13 in ap-
pendix).

4 Method

Given an image, a text prompt, and a user-indicated location
(e.g., via a mouse click), our goal is to modify the image
according to the prompt in an unspecified area roughly sur-
rounding the provided point. We utilize Blended Latent Dif-
fusion (BLD) (Avrahami, Fried, and Lischinski 2023) as our
image editing backbone, but rather than providing it with
a fixed mask at the outset, we evolve a mask dynamically
throughout the diffusion process. We initialize the process
with a large mask around the indicated point, and gradually
contract the mask towards the center, while guiding the rate
of contraction along the mask boundary using a semantic
alignment loss based on Alpha-CLIP (Sun et al. 2023).

This iterative process results in a mask whose shape and
size are determined by both the text prompt, the content, and
the structure of the original input image. Furthermore, the
shape of the mask adjusts itself to the emerging object, as
the mask’s evolution is determined by the gradients obtained
by the semantic alignment loss (see Section 4.1), which in
turn depend on the shape of the object being generated (see
Figure 2 for mask evolution illustration, and Figure 5 for
examples of generated masks). Once the mask has settled
into its final form, we run BLD once more, using the final
mask to generate the final result. Our method is outlined in
Algorithm 1 and illustrated in Figure 6.

4.1 Dynamic Mask Evolution

Given an image x, a text prompt p, and a user-provided loca-
tion c, we aim to modify x, so as to align with p, in proxim-
ity to c. We start by encoding the input image zinit = E(x).
We also create a 2D potential height-field Φ in latent space,
which is initialized to a Gaussian around c.

We now perform the BLD process, where at each step t we
obtain a binary mask Mt by thresholding the potential Φ us-
ing a threshold τ . The mask evolves dynamically through the
BLD process, since the threshold τ and the potential Φ are
both updated at each step: the threshold τ increases, while
the potential Φ is elevated — starting from a specific step, as
explained later — in important areas to ensure they remain
above the threshold. This prevents the mask from shrinking
in spatial areas that emerge as important for alignment of the
generated new content with the guiding prompt p. As a con-
sequence, the mask evolves into a shape determined by the
newly generated object.

Commencing the blending at 25% of the diffusion steps,
the initial threshold value τinit is relatively low, such that Mt

is sufficiently large at the beginning (∼16% of the image).
This enables BLD to capture the desired edit, as demon-
strated in Figure 7 (this idea was originally introduced in
BLD to cope with the case of small or thin input masks). On
the other hand, to prevent overly large masks that could re-
sult in large-scale changes failing to blend seamlessly with
the original content, we increase τ rapidly at the beginning,
and delay first potential elevation step (denoted b) to 40%
of the total diffusion steps. This ensures potential elevation
starts late enough to control mask size but still early enough,
when the blended image is noisy and can be modified. We
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Figure 5: Examples of generated masks. For each triplet,
given an input image with clicked point (left) and a prompt
(below), a purple overlay shows the generated mask (mid-
dle). The rightmost image is Click2Mask output.

stop mask evolution when the spatial structure is nearly de-
termined (at 50% of the total diffusion steps, denoted l).

The potential elevation is obtained by generating the es-
timated final image x̃0 at each step, and calculating the co-
sine distance between the CLIP (Radford et al. 2021) em-
beddings of x̃0 and the guidance prompt p. x̃0 is obtained
by blending a predicted final foreground latent z̃fg, with the
original latent background zinit:

z̃0 = z̃fg ⊙Mt + zinit ⊙ (1−Mt) (2)

The decoded x̃0 = D(z̃0) is passed alongside the current
mask Mt and the prompt p to Alpha-CLIP to focus on the
area of Mt. The gradient of the cosine distance with respect
to the latent mask pixels is then calculated by backpropa-
gating through the CLIP embeddings and the decoder. The
larger the absolute gradient of the cosine distance (i.e. CLIP
loss) with respect to a pixel in Mt, the more significant this
location is for the alignment of the generated content to the
prompt p. Adding the absolute gradient values G to Φ, ele-
vates important areas in the Φ height-field (around Mt’s con-
tour for stable evolution – Figures 14 and 15 in appendix).

Halfway through the mask evolution steps (denoted k), we
initiate an optional stoppage of Mt’s evolution if the Alpha-
CLIP loss does not decrease in subsequent steps.

Starting from the first Φ elevation step b, after each up-
date of Mt, we restart the BLD process, letting it proceed
from the beginning to the current step t, using the mask Mt

as a fixed mask. This is to allow pixels that were added (or
removed) in Mt to affect the generated image from the be-
ginning (see Figure 16 in appendix).

We then apply Equation (1) and blend zfg with zbg using
the mask Mt, which provides zt−1, the input to next step.

After all mask evolution steps have been completed, we
perform a final BLD run using the final Mt with several
seeds to obtain several candidate results, where the best one
is filtered by Alpha-CLIP. As noted earlier, rather than fine-
tuning the VAE decoder weights to preserve the original
background details outside the mask, we employ instead a

Algorithm 1: Click2Mask
Given: models LDM = {noise(z, t), denoise(z, p, t) →
(zt, z0)}, VAE = {E(x), D(z)}, BLD = {(x, p,m, t) → zt},
Alpha-CLIP = {αCLIP(x,m, p) → SimCLIP}, and hyper pa-
rameters {τn...l, lr} with schedulers {n, b, k, l}

Input: input image x, text prompt p, target coordinates c
Output: edited image x̂ that matches the prompt p in proximity
of c, and complies to x outside edited region

Φ = Gaussian(c)
zinit = E(x)
zn ∼ noise(zinit, n)
for all t from n to l do

zbg ∼ noise(zinit, t)
zfg, z̃fg ∼ denoise(zt, p, t)
G = 0
if t < b then

z̃0 = z̃fg ⊙Mt + zinit ⊙ (1−Mt)
St ∼ αCLIP(D(z̃0), upscale(Mt), p)
G ∼ |gradients(St,Mt)|
zfg ∼ BLD(x, p,Mt, t)

end if
if t < k and St > St+1 then exit loop
Mt = (Φ +G ∗ lr) > τt
zt = zfg ⊙Mt + zbg ⊙ (1−Mt)

end for
ẑ ∼ BLD(x, p,Mt, 0)
return D(ẑ)

simple Gaussian mask feathering when blending the BLD
output and the original input image (in pixel space).

5 Results
Given that our method is mask-free, we compare ourselves
to mask-free image editing methods, with the slight differ-
ence being that a clicked point replaces location-describing
text in the prompt. As our paradigm is novel and lacks a di-
rectly aligned method for comparison, using a single click
instead of detailed text is a reasonable trade-off. To be-
gin with, we compare to MagicBrush, which is the SoTA
method among the open-source models. In addition, we
compare to Emu Edit, which is the SoTA among closed-
source models. Since we are unable to run Emu Edit our-
selves, we must rely on the Emu Edit Benchmark (Sheynin
et al. 2023), which includes images generated by Emu Edit.
This benchmark contains images with several categories of
editing instructions, such as adding objects, removing ob-
jects, altering style, etc. As our focus is adding objects to
images, we filtered the dataset by the “addition” instruction.
This resulted in 533 items, from which we randomly sam-
pled an evaluation subset of 100 samples.

We perform the following fixed routine for each sample:
(i) Removed the word that instructs addition (e.g., “Add”,
“Insert”), (ii) removed the part that describes the edit loca-
tion, and instead (iii) clicked on the image to direct the edit-
ing location. For instance, the instruction “Add a black base-
ball cap to the man on the left” becomes “A black baseball
cap” (non-localized instruction).
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Figure 7: Ablation study: No early mask enlargement. As
explained in Section 4, we start with a large mask (∼16%
of the image), to capture the desired edit in Mt. Top: Mt

(purple contours on decoded z̃fgs, throughout diffusion steps
indicated by %s) evolves without an initial enlargement, and
the diffusion guides the white dog to the prompt “Huge
bone”, while the small Mt fails to capture the bone. Bot-
tom: Click2Mask’s enlarged Mt captures the guided content
although the dog is also initially identified as the bone.

Following Emu Edit (Sheynin et al. 2023) and BLD
(Avrahami, Fried, and Lischinski 2023), each sample run
produces multiple results internally (comprising three mask
evolutions, each followed by a batch of 8 outputs), and
outputs the best result, as determined automatically using
Alpha-CLIP scoring.

To evaluate our results, we compared these 100 outputs
generated by Click2Mask, with the outputs generated by
Emu Edit and by MagicBrush (which ran with the origi-
nal edit instructions). We conducted the evaluation through
a user study (Section 5.1), as well as through automatic met-
rics (Section 5.2). In both cases, our method outperformed
the SoTA methods.

5.1 Human Evaluation
We conducted a user study, where participants were given
a random batch of survey items out of 200 total items (100
items comparing to each model). Each item included an in-
put image, the original edit instruction, and a pair of edited
images: one generated by our model, and the other generated
by either Emu Edit or MagicBrush. Participants were asked
to rank which of the edited images performed better accord-

ing to three criteria: executing the instruction, not adding any
other edits or artifacts, and generating a realistic image. The
survey was completed by 149 participants. Each of the 200
items was rated by at least 5 users, where the average rate
was 15.67 users in Emu Edit, and 8.06 users in MagicBrush.

In order to compare Click2Mask vs. Emu Edit, as well
as Click2Mask vs. MagicBrush, while taking into account
“ties” (ratings stating equal performance on an item, or items
with equal ratings to both methods), we analyzed the results
using the following metrics: (A) The percentage of items in
which each method was preferred by the majority, disregard-
ing ties. (B) For each item we counted if the majority voted
for a tie, and if so marked it as a “tied item”. For the other
“non-tied items”, we conducted the same majority vote anal-
ysis described in A. (C) The number of total ratings for each
method. In each parameter our method surpassed the closed-
source SoTA method Emu Edit, and the open-sourced SoTA
MagicBrush, as shown in Table 1. See Figures 1 and 4 (and
Figures 19 to 22 in appendix) for qualitative comparisons
to baselines alongside InstructPix2Pix, and Figure 8 for a
detailed comparison. Statistical significance analysis is pro-
vided in the appendix.

5.2 Automatic Metrics
Utilizing the input captions and output captions (describ-
ing the desired output) provided in Emu Edit benchmark,
a variety of metrics were used to assess each method’s out-
puts on the sampled items: (i) Directional CLIP (Gal et al.
2022) similarity (CLIPdirect) To measure the alignment be-
tween changes in input and output images and their corre-
sponding captions. (ii) CLIP similarity between the output
image and output caption to evaluate alignment with desired
outputs CLIPout). (iii) Mean L1 pixel distance between input
and output images, to measure the amount of change in the
entire image (L1). (iv) In addition, we present a new metric,
Edited Alpha-CLIP (αCLIPedit).

Edited Alpha-CLIP. Besides evaluating the images glob-
ally, it is beneficial to evaluate the edited region. We offer an
Edited Alpha-CLIP procedure to overcome the lack of input
or output masks in Emu Edit and MagicBrush: we extract
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Figure 8: Failure cases of baselines. Baselines suffer occa-
sionally from replacing an existing object instead of adding
one (⇔), misplacing the object (↫), modifying other ob-
jects (⊼), altering the image globally (■), or failing to pro-
duce an edit (∅). For additional comparisons to baselines,
see Figure 4 and appendix.

a mask specifying the edited area in the generated image,
and calculate the Alpha-CLIP similarity between the masked
generated image and the instruction (removing words de-
scribing addition and edit locations as mentioned in Sec-
tion 5). See Appendix A.4 and Figure 12 in appendix for
details and extracted masks demonstrations.

Table 2 shows that our method surpassed both Emu Edit
and MagicBrush in all metrics: higher scores in all CLIP-
based metrics, indicating stronger similarities, and lower L1
distance indicating better compliance with input image.

5.3 Ablation Study
We conducted several ablation studies to analyze the im-
pact of various components on the overall performance of
our model. Figure 7 demonstrates the need for a sufficiently
large mask on early diffusion steps. See additional ablation
studies in Appendix A.2 accompanied by Figures 13 to 18.

6 Model Limitations
During the evolution process, our model encounters diffi-
culty converging to small, finely detailed mask shapes (e.g.,

(A) (B) (C)

Method % Majority
% Tied
items

% Majority
from non-tied

# Total
votes

Emu Edit 42.86%
35%

47.69% 416

Click2Mask 57.14% 52.31% 465

MagicBrush 16.30%
27%

15.07% 148

Click2Mask 83.70% 84.93% 362

Table 1: Human evaluation results. Comparisons of (A): %
of items each method received majority votes, disregarding
ties. (B): % of items the majority voted as tie (left), and %
of items – out of the other non-tied items – each method re-
ceived majority votes (right). (C): Total votes. Refer to Sec-
tion 5 for details.

Method CLIPdirect ↑ CLIPout ↑ αCLIPedit ↑ L1 ↓

Emu Edit 0.150 0.331 0.186 0.046
MagicBrush 0.095 0.324 0.166 0.049
Click2Mask 0.204 0.334 0.195 0.027

Table 2: Automatic metrics results. Evaluation using au-
tomatic metrics. CLIPdirect measures consistency between
changes (from input to output) in images and captions,
CLIPout measures similarity between output image and
output caption, αCLIPedit measures similarity to the non-
localized instruction in the edited area, and L1 measures the
alignment with the input image. See Section 5 for details.

a dog collar). This stems from hyperparameter choices bal-
ancing an initial large mask to capture the object, and a non-
aggressive shrinkage rate to avoid boundary cropping. Alter-
native configurations might achieve smaller masks.

Additionally, since text guidance in Stable Diffusion is
not spatially driven, BLD sometimes has difficulty adding
the desired object to the masked area when a similar object
is nearby in the unmasked area (e.g., adding a Bigfoot next
to a person). Since we use BLD as our backbone, we some-
times encounter this problem. However, we have consider-
ably improved it in comparison to BLD by optimizing the
progressive mask shrinking process, and applying it across
all objects, not just thin objects, as part of our mask evolu-
tion process. Moreover, in comparison to other SOTA meth-
ods, they often fail to add the desired object even if a similar
one is not present, and our method outperforms them in both
cases. See Figure 9 for examples of these cases.

7 Conclusion
Click2Mask presents a novel approach for local image gen-
eration, freeing users from having to specify a mask, or de-
scribing the input or target images, and without being con-
strained to existing objects. We look forward to users apply-
ing our method with the source code that is available in the
project page (see Footnote in Page 1), either to edit images
or to embed the method for generating or fine-tuning masks.



Input “A golden necklace”

Input “A white dog”

Figure 9: Limitations. Top: the evolving mask struggles
to converge to a small, fine-detailed shape like a golden
necklace. Bottom: when prompt content (i.e. white dog) al-
ready exists near the generated mask, our Stable Diffusion
and BLD backbones, which guide the image globally to the
prompt, may fail to confine guidance to the masked region.
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Appendix

A Additional Experiments
In Appendix A.1 we start by providing additional
Click2Mask generated masks examples, as well as further
comparisons to the baselines Emu Edit, MagicBrush, and
InstructPix2Pix. In Appendix A.2 additional ablation tests
are provided. Appendix A.3 shows a statistical analysis held
on the results from the user case study in Section 5.

A.1 Additional Results
Additional examples of Click2Maskgenerated masks can be
found in Figure 10. Further results comparing to baselines
Emu Edit, MagicBrush, and InstructPix2Pix are provided in
Figure 19, Figure 20, Figure 21, and Figure 22. A compar-
ison of prompt lengths with baselines is illustrated in Fig-
ure 11.

A.2 Additional Ablation Study
Figure 15 illustrates the importance of elevating potential
Φ only around the area of Mt’s contour, and not across the
entire image. Figure 16 demonstrates an ablation study for
the rerun component. Figure 13 shows the importance of
Gaussian mask feathering after the final diffusion step. Fig-
ure 14 depicts the importance of adding a surrounding re-
ceptive around Mt’s area for gradient addition. Figure 18 il-
lustrates a baseline using a fixed, non-evolving mask, while
Figure 17 presents an alternative mask evolution approach
we explored, based on a continuous mask. An additional ab-
lation study can be found in Section 5.3.

A.3 Statistical Analysis
As mentioned in Section 5, we conducted a user case study
between Click2Mask with both Emu Edit and MagicBrush.
To determine whether our comparisons are statistically sig-
nificant, we use Pearson’s Chi-squared test (Pearson 1900)
with Yates’s continuity correction (Yates 1934). The tests
show that the results are statistically significant, as can be
seen in Table 3.

A.4 Edited Alpha-CLIP Mask Extraction
As mentioned in Figure 12, in order to evaluate the edited
region in methods that do not have input or output masks (as
Emu Edit and MagicBrush), we extract a mask which spec-
ifies this region. The mask is extracted by first calculating
the L1 distance between the input image and the generated
image. We then take the mean value over the RGB channels
for each pixel, and further clean noise by thersholding, Min-
Pooling and Max-Pooling, and creating convex hulls. This
provides us with an almost exact mask of the edited region,
as demonstrated in Figure 12.

B Implementation Details
B.1 Pretrained Models
The pretrained models that we have used in all the experi-
ments described in this paper are as follows:
• Blended Latent Diffusion model from Avrahami et al.

(2023).
• Text-to-image Latent Diffusion model from Rom-

bach et al. (2022) with checkpoint https://huggingface.co/
stabilityai/stable-diffusion-2-1-base.

• Alpha-CLIP with ViT-L/14@336px by Sun et al.
(2023).

• Emu Edit benchmark from https://huggingface.co/
datasets/facebook/emu edit test set and Emu Edit gen-
erated images from https://huggingface.co/datasets/
facebook/emu edit test set generations by Sheynin et al.
(2023).

• MagicBrush by Zhang et al. (2023) results were generated
with latest checkpoint
MagicBrush-epoch-52-step-4999.ckpt.

• InstructPix2Pix results generated from https:
//huggingface.co/spaces/timbrooks/instruct-pix2pix
by Brooks et al. (2023).

All the above were implemented in PyTorch (Paszke et al.
2019).

For DALL·E 3 (Betker et al. 2023), we used OpenAI’s
ChatGPT-4o interface https://chatgpt.com.

All input images are real and under free public domain or
Creative Commons license (including Jeremy Bishop, Isaac
Maffeis, Odysseas Chloridis and Cerqueira under Unsplash
license; jenyalucy and Icecube11 under Pixabay license).

B.2 Our Model
When calculating the Alpha-CLIP loss to derive gradients
and to pick automatically the best output out of different
random seeds (as discussed in Section 5), we augmented the
image to mitigate adversarial results, as discussed in (Avra-
hami, Lischinski, and Fried 2022), and dilate the mask re-
gion to add context.

The diffusion steps consisted of 100 steps. The total run-
time for an edit on an Nvidia T4 Medium GPU is approxi-
mately 70 seconds.

To achieve unity over different samples in terms of learn-
ing rate lr and potential Φ, a normalization is performed
on the saliency map (i.e., absolute gradients backpropagated
from Alpha-CLIP loss function).

To reduce noise, maintain stability, and ensure a smooth
mask, we perform Gaussian filtering to Mt on a number of
occasions, and post-process it each update step to account
for gaps that can occur due to the landscape thresholding,
such as filling holes, connecting disjointed mask parts, re-
moving noise, etc. Additionally, we reset to the initial ran-
dom seed on each BLD rerun for consistency of mask evo-
lution.

Source code of our model, which is implemented in Py-
Torch and runs on a GPU, is publicly available in the project
page (see Footnote in Page 1).
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Figure 10: Additional examples of generated masks. In each image triplet, the leftmost image is the input with clicked point,
accompanied by the given prompt on its left. The generated mask is demonstrated by a purple overlay on the input image (center
image) and the rightmost image is the output of Click2Mask.



Figure 11: Prompts word count. An additional advantage
of our method is that users can provide shorter prompts,
which require less effort on their part. The bar plot above
shows prompts word lengths of Emu Edit benchmark in
comparison to Click2Mask. Each purple high bar represents
the number of words in an item in Emu Edit benchmark,
and the overlaid green low bar represents the correspond-
ing prompt given to Click2Mask after removing the word
that describes addition (e.g. “Add”, “Insert”, etc.) and the
words describing the desired edit location (e.g. “on the ta-
ble next to the fridge”), as explained in the fixed routine in
Section 5. The 100 bars correspond to the 100 samples we
compared with Emu Edit and MagicBrush, as described also
in Section 5. The purple higher horizontal line is the mean
prompt length in Emu Edit benchmark’s samples, while the
green lower one is the mean length of Click2Mask’s shorter
prompts.

Method 1 Method 2 Majority (A) Majority (B) Total votes
p-value p-value p-value

Emu Edit Ours p < 10−21 p < 10−14 p < 10−192

MagicBrush Ours p < 10−19 p < 10−15 p < 10−111

Table 3: Statistical analysis. We use Pearson’s Chi-squared
test with Yates’s continuity correction to determine whether
our results are statistically significant. Majority (A) refers to
the comparison of majority votes for each item disregarding
ties, and majority (B) refers to the comparison of votes dis-
regarding items that most users rated as ties. Total votes are
the total ratings for each method. See Section 5 for further
details.
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“Add a sandcastle to the right of the dog”
“A sandcastle”

“Add Christmas lights to the top of the television”
“Christmas lights”

Figure 12: Edited Alpha-CLIP. A depiction of extracted masks as part of our Edited Alpha-CLIP metric presented in Section 5.
Left column is the input with clicked point, where the text bellow each image row is the instruction given to Emu Edit and
MagicBrush (higher text) and prompt given to Click2Mask (lower text). In each method’s pair, the left image is the output, and
the right image is the mask extracted by the Edited Alpha-CLIP metric.

Prompt Input (a) Emu Edit (b) No blend (c) Binary blend (d) Gaussian blend

“Add a massive
sinkhole in front

of the riders”

“A massive
sinkhole”

“Add a cat
playing with the
white mouse”

“A cat playing”

Figure 13: Background preservation ablation study. When decoding the final diffused latents, details are not fully preserved
(b). A binary blending of the mask and the input image at pixel space will yield artifacts on pixels surrounding the mask’s
contour (c). Emu Edit suffers as well from loss of details. As mentioned in Section 4, we suggest a Gaussian blend at pixel
space (d), which preserves the background details, while creating a seamless blend. This also eliminates the need for a decoder
weights optimization presented in BLD. Please zoom in for a vivid visual.
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Figure 14: Ablation study: elevating Φ only inside Mt. Top row shows the evolution of Mt (depicted by purple contours
over z̃fgs during diffusion steps as indicated by percentages below) where potential Φ elevation is contained within current Mt.
Bottom row depicts Mt’s evolution in Click2Mask, where a surrounding ring of Mt is also elevated in Φ. The prompt is “Fleet
of ships”. When elevating Φ only within Mt, the mask shrinks continuously, unlike Click2Mask, where the outer ring elevation
prevents the mask from shrinking in important areas, resulting in a mask shaped according to the generated objects.
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Figure 15: Ablation study: elevating Φ on all image. With the prompt “Figures from Mount Rushmore”, the top row depicts
mask Mt’s evolution (shown by a purple contour over z̃fg throughout the diffusion steps indicated by percentages below) when
elevating potential Φ across the entire image. This results in an unstable and unsmooth mask progression, with an output
disassociated from the input image. Bottom row depicts Mt’s evolution in Click2Mask, where only the surrounding area of
Mt’s contour is elevated in Φ.
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Figure 16: Rerun ablation study. The figure depicts the rerun procedure. The prompt is “Snowy mountains”, and the upper
row lacks rerun, while the lower low has. In the upper row (where the purple mask contours are marked over z̃fgs throughout
diffusion steps, as percentages below indicate), pixels that are added to the mask Mt at advanced stages, fail to comply to the
guiding prompt, since the spacial information has already been determined. Rerun allows a “refresh” of the information to be
driven towards the guiding prompt.
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Figure 17: Continuous mask study. We investigated the use of a continuous mask, where instead of employing a potential
height field (Φ) with binary thresholding (τ ), we utilized a continuous mask with a tanh normalization layer, followed by
a shift to the (0, 1) range. Bottom row: The evolution of the continuous mask throughout the diffusion process, where blue
represents high values and red represents low values. The white contour corresponds to a value of 0.5. Top row: The z̃fg values
throughout the diffusion process, with the white contour (indicating 0.5 values in the continuous mask). The two approaches
share similarities: both involve a continuous field (the continuous mask or Φ) and a transition to (almost) discrete values (via
shifted tanh or binary thresholding with τ ). The continuous mask approach produced promising results, as illustrated in the
figure, and represents a feasible alternative. However, our experiments indicated that the method based on binary thresholding
(τ ) applied to a potential height field (Φ) ultimately performed better overall.

Input No Evolution Click2Mask Input No Evolution Click2Mask

“A fruit stand” “Santa Clause in his sled flying”

Figure 18: Ablation study: no mask evolution. This figure presents an ablation study in which we employed a naive mask that
remained fixed throughout the process. Specifically, we used the initial thresholded Mt as a static mask, without any evolution,
and applied BLD with it. Each quadruplet in the figure consists of (from left to right): the clicked input, the output generated
using the fixed naive mask (indicated by a purple outline), the Click2Mask output with the final evolved mask (also depicted
with a purple outline), and the Click2Mask output without a mask outline. As demonstrated, the naive approach results in
significantly poorer performance.
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Figure 19: Additional comparisons with SoTA methods. Additional comparisons of Emu Edit (Sheynin et al. 2023), Mag-
icBrush (Zhang et al. 2023) and InstructPix2Pix (Brooks, Holynski, and Efros 2023) with our model Click2Mask. The upper
prompts were given to baselines, and the lower ones to Click2Mask. Inputs contain the clicked point from Click2Mask.
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Figure 20: Additional comparisons with SoTA methods.
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Figure 21: Additional comparisons with SoTA methods.
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Figure 22: Additional comparisons with SoTA methods.


